ALMOST HERMITIAN MANIFOLDS WITH CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

SUMIO SAWAKI & KOUEI SEKIGAWA

1. Introduction

B. Smyth proved in his thesis [6] the following

Theorem. Let M be a complex hypersurface of a Kählerian manifold \tilde{M} of constant holomorphic sectional curvature \tilde{c} . If M is of complex dimension ≥ 2 , the following statements are equivalent:

- (i) M is totally geodesic in \tilde{M} ,
- (ii) M is of constant holomorphic sectional curvature,
- (iii) M is an Einstein manifold and at one point of M all sectional curvatures of M are $\geq \frac{1}{4}\tilde{c}$ (resp. $\leq \frac{1}{4}\tilde{c}$) when $\tilde{c} \geq 0$ (resp. ≤ 0).

One of the purposes of the present paper is to generalize this theorem to almost Hermitian manifolds, and another is to prove that an F-space of constant holomorphic sectional curvature is Kählerian. Here by an F-space we mean an almost Hermitian manifold M satisfying $R(X,Y)\cdot F=0$ for any vector fields X and Y on M, where the endomorphism R(X,Y) operates on the almost complex structure tensor F as a derivation at each point of M.

In § 2, we shall state the differential-geometric properties of a complex hypersurface of an almost Hermitian manifold satisfying a certain condition and a generalization of the equivalence of the first two statements of Smyth's result. We proceed in § 3 to study the same properties of *O-spaces and K-spaces, and to state a generalization of the result of Smyth. In § 4 we shall prove some theorems for F-spaces of constant holomorphic sectional curvature. In §§ 2 and 3, by a complex hypersurface we mean a connected almost complex hypersurface.

2. Complex hypersurfaces of an almost Hermitian manifold

Let \tilde{M} be an almost Hermitian manifold of complex dimension n+1, and denote the almost complex structure and the Hermitian metric of \tilde{M} by F and g respectively. Moreover, let M be a complex hypersurface of \tilde{M} , i.e., suppose that there exists a complex analytic mapping $f: M \to \tilde{M}$. Then for each $x \in M$ we identify the tangent space $T_x(M)$ with $f_*(T_x(M)) \subset T_{f(x)}(\tilde{M})$ by means of f_* . Since $f^* \circ g = g'$ and $F \circ f_* = f_* \circ F'$ where g' and F' are the Hermitian

Communicated by K. Yano, October 2, 1972.

metric and the almost complex structure of M respectively, g' and F' are respectively identified with the restrictions of the structures g and F to the subspace $f_*(T_x(M))$.

As is well known, we can choose the following special neighborhood U(x) of x for a neighborhood $\tilde{U}(f(x))$ of f(x). Let $\{\tilde{U}; \tilde{x}^i\}$ $(i=1, \dots, 2n+2)$ be a system of coordinate neighborhoods of \tilde{M} . Then $\{U; x^i\}$ is a system of coordinate neighborhoods of M such that $x^{2n+1} = x^{2n+2} = 0$ where $x^i = \tilde{x}^i \circ f$.

By \tilde{V} we always mean the Riemannian covariant differentiation on \tilde{M} and by ξ a differentiable unit vector field normal to M at each point of U(x).

If X and Y are vector fields on the neighborhood U(x), we may write

$$\tilde{\mathcal{V}}_{x}Y = \mathcal{V}_{x}Y + h(X,Y)\xi + k(X,Y)F\xi,$$

where $\nabla_X Y$ denotes the component of $\tilde{\nabla}_X Y$ tangent to M.

Lemma 2.1. (i) \overline{V} is the covariant differentiation of the almost Hermitian manifold M.

(ii) h and k are symmetric covariant tensor fields of degree 2 on U(x). Proof. Making use of (2.1), we have

$$\begin{split} \tilde{\mathcal{V}}_{f_1X}(f_2Y) &= f_1\tilde{\mathcal{V}}_X(f_2Y) = f_1(Xf_2)Y + f_1f_2\tilde{\mathcal{V}}_XY \\ &= f_1(Xf_2)Y + f_1f_2\mathcal{V}_XY + f_1f_2h(X,Y)\xi + f_1f_2k(X,Y)F\xi \;, \\ \tilde{\mathcal{V}}_{f_1X}(f_2Y) &= \mathcal{V}_{f_1X}(f_2Y) + h(f_1X,f_2Y)\xi + k(f_1X,f_2Y)F\xi \;, \end{split}$$

where X and Y are vector fields on U(x), and f_1 and f_2 are differentiable functions on U(x). From the above two equations, we have

$$h(f_1X, f_2Y) = f_1f_2h(X, Y)$$
, $k(f_1X, f_2Y) = f_1f_2k(X, Y)$,

which show that h and k are tensor fields on U(x).

Thus, since $\nabla_x Y$ becomes a vector fields, from (2.1) it follows that ∇ is a covariant differentiation on U(x).

Next, from

$$\begin{split} \tilde{\mathcal{V}}_X Y &= \mathcal{V}_X Y + h(X,Y) \xi + k(X,Y) F \xi , \\ \tilde{\mathcal{V}}_Y X &= \mathcal{V}_Y X + h(Y,X) \xi + k(Y,X) F \xi , \\ [X,Y]_{\tilde{\mathcal{M}}} &= [X,Y]_{\mathcal{M}} , \end{split}$$

we have

$$\tilde{T}(X,Y) = T(X,Y) + \{h(X,Y) - h(Y,X)\}\xi + \{k(X,Y) - k(Y,X)\}F\xi,$$

where \tilde{T} (resp. T) is the torsion tensor of the connection on \tilde{M} (resp. U(x)) with respect to \tilde{V} (resp. V). Since $\tilde{T}=0$, it follows that T=0 and h and k are symmetric.

From $\tilde{V}g = 0$ we have easily Vg = 0. Hence the proof is completed.

The identities $g(\xi,\xi)=1$ and $g(F\xi,F\xi)=1$ imply $g(\tilde{V}_X\xi,\xi)=0$ and $g(\tilde{V}_X(F\xi),F\xi)=0$ respectively. Therefore we may put

$$\tilde{V}_{x}\xi = -A(X) + s(X)F\xi,$$

$$\tilde{V}_X(F\xi) = -B(X) + t(X)\xi,$$

where A(X) and B(X) are tangent to M.

Lemma 2.2. (i) A, B and s, t are tensor fields on U(x) of type (1.1) and (0,1) respectively.

(ii) A and B are symmetric with respect to g, and satisfy

$$(2.4) h(X,Y) = g(AX,Y),$$

$$(2.5) k(X,Y) = g(BX,Y)$$

for any vector fields X and Y.

Proof. For any vector field X and any differentiable function f on U(x), we have

$$f\tilde{V}_X\xi = \tilde{V}_{fX}\xi = -A(fX) + s(fX)F\xi = -fA(X) + fs(X)F\xi$$

from which it follows that A(fX) = fA(X), s(fX) = fs(X). Thus A and s are tensor fields on U(x). For ξ and any vector field Y on U(x), we have $g(Y, \xi) = 0$ and therefore

$$g(\tilde{V}_XY,\xi) + g(Y,\tilde{V}_X\xi) = 0 \; ,$$

in which substitution of (2.1) and (2.2) gives (2.4). However, since h is symmetric, from (2.4) it follows that g(AX, Y) = g(X, AY) which shows that A is symmetric. Similarly the properties of B are verified.

Now let M be a complex hypersurface satisfying the condition

$$(2.6) h(X,Y) = k(X,FY)$$

for any vector fields X and Y on U(x) at every point $x \in M$. It is easily verified that the condition (2.6) is independent of the choice of mutually orthogonal unit vectors ξ and $F\xi$ normal to M.

Lemma 2.3. In a complex hypersurface M of \tilde{M} satisfying (2.6), we have

(i)
$$FA = -AF, \quad FB = -BF,$$

(ii) FA and FB are symmetric with respect to g,

(iii)
$$B = FA.$$

Proof. By virture of (2.4) and (2.6), for any vector fields X and Y we have

(2.7)
$$g(AFX, Y) = h(FX, Y) = k(FX, FY)$$
,

(2.8)
$$g(FAX, Y) = -g(AX, FY) = -h(X, FY) = -k(FX, FY)$$
,

which imply that g(AFX, Y) = -g(FAX, Y), so that AF = -FA. Since A is symmetric, by (i) we thus have

$$g(AFX, Y) = g(FX, AY) = g(X, AFY)$$
,

which shows that AF is symmetric. Similarly the properties of B are verified. Finally, by (2.6) and (2.5) we have

$$h(X, FY) = -k(X, Y) = -g(BX, Y) = -g(FBX, FY)$$
.

On the other hand, we have h(X, FY) = g(AX, FY) by (2.4) and therefore g(AX, FY) = -g(FBX, FY), from which it follows that A = -FB, i.e., B = FA.

Remark. In a complex hypersurface M of \tilde{M} , h(X, Y) = k(X, FY) is equivalent to B = FA.

Since A is symmetric and FA = -AF in a complex hypersurface M of \tilde{M} satisfying (2.6), we have the following well-known

Lemma 2.4. In a complex hypersurface M of \tilde{M} satisfying (2.6), at any point $y \in U(x)$ there exists an orthonormal basis $\{e_1, \dots, e_n, Fe_1, \dots, Fe_n\}$ of $T_n(M)$ with respect to which the matrix A is diagonal of the form

$$\left[egin{array}{cccc} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_n & & & \\ & & & -\lambda_1 & & \\ & & & \ddots & & \\ & & & & -\lambda_n \end{array}
ight]$$

where $Ae_i = \lambda_i e_i$, and $AFe_i = -\lambda_i Fe_i$, $i = 1, \dots, n$.

Lemma 2.5. If \tilde{R} and R are the Riemannian curvature tensors of \tilde{M} and a complex hypersurface M of \tilde{M} satisfying (2.6) respectively, then for any vector fields X, Y, Z and W on U(x) we have the following Gauss equation:

$$\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) - \{g(AX, Z)g(AY, W) - g(AX, W)g(AY, Z)\} - \{g(FAX, Z)g(FAY, W) - g(FAX, W)g(FAY, Z)\}.$$

Proof. From (2.1) it follows that

$$\tilde{\mathcal{V}}_Y W = \mathcal{V}_Y W + h(Y,W) \xi + k(Y,W) F \xi \ .$$

Applying $\tilde{\mathcal{V}}_x$ to this equation and making use of (2.2) and (2.3), we obtain

$$\tilde{V}_{X}\tilde{V}_{Y}W = V_{X}V_{Y}W - h(Y, W)A(X) - k(Y, W)B(X) + \{h(X, V_{Y}W) + X(h(Y, W)) + k(Y, W)t(X)\}\xi + \{k(X, V_{Y}W) + X(k(Y, W)) + h(Y, W)s(X)\}F\xi,$$

$$\tilde{\mathcal{V}}_{\lceil X,Y \rceil} W = \mathcal{V}_{\lceil X,Y \rceil} W + h([X,Y],W) \xi + k([X,Y],W) F \xi .$$

Substitution of (2.10) in

$$\begin{split} \tilde{R}(X,Y)W &- R(X,Y)W \\ &= \tilde{\mathcal{V}}_x \tilde{\mathcal{V}}_Y W - \tilde{\mathcal{V}}_y \tilde{\mathcal{V}}_x W - \tilde{\mathcal{V}}_{[x,y]} W - (\mathcal{V}_x \mathcal{V}_y W - \mathcal{V}_y \mathcal{V}_x W - \mathcal{V}_{[x,y]} W) \end{split}$$

gives easily

$$\tilde{R}(X, Y, Z, W) = R(X, Y, Z, W) - \{g(AX, Z)h(Y, W) - g(AY, Z)h(X, W)\} - \{g(BX, Z)k(Y, W) - g(BY, Z)k(X, W)\},$$

or (2.9) by (2.4), (2.5) and (2.6).

Lemma 2.6. Let M be a complex hypersurface of \tilde{M} and satisfy the condition (2.6).

(i) If p is 2-plane tangent to M at a point of U(x), then

(2.11)
$$\tilde{K}(p) = K(p) - \{g(AX, X)g(AY, Y) - g(AX, Y)^2\} - \{g(FAX, X)g(FAY, Y) - g(FAX, Y)^2\},$$

where X, Y form an orthonormal basis of p, and $\tilde{K}(p)$ (resp. K(p)) is the sectional curvature of p considered as a 2-plane tangent to \tilde{M} (resp. M).

(ii) If X is a unit vector tangent to M at a point of U(x), then

(2.12)
$$\tilde{H}(X) = H(X) + 2\{g(AX, X)^2 + g(FAX, X)^2\},$$

where $\tilde{H}(X)$ (resp. H(X)) is the holomorphic sectional curvature in \tilde{M} (resp. M).

Proof. (i) is immediate on replacing Z and W in the Gauss equation by X and Y respectively, and making use of the fact that A and FA are symmetric. (ii) is also immediate on replacing Y by FX in (2.11) and making use of the fact that FA = -AF.

Proposition 2.7. Let M be a complex hypersurface of \tilde{M} of constant holomorphic sectional curvature \tilde{c} . If M is of complex dimension ≥ 2 and satisfies the condition (2.6), then at each point of M there exists a holomorphic plane whose sectional curvature in M is \tilde{c} , and therefore if M is of constant holomorphic sectional curvature c, then $c = \tilde{c}$.

Proof. Let $\{e_1, \dots, e_n, Fe_1, \dots, Fe_n\}$ be an orthonormal basis in Lemma 2.4. Since $n \geq 2$, there exist λ_i and λ_j $(i \neq j)$ defined in Lemma 2.4.

In the case where $\lambda_i > 0$ and $\lambda_j > 0$, we set

$$X = (\lambda_i + \lambda_j)^{-\frac{1}{2}}(\sqrt{\lambda_j}e_i + \sqrt{\lambda_i}Fe_j) .$$

Then

$$AX = \frac{\sqrt{\lambda_j}\lambda_i e_i - \sqrt{\lambda_i}\lambda_j F e_j}{(\lambda_i + \lambda_j)^{\frac{1}{2}}} , \qquad FAX = \frac{\sqrt{\lambda_j}\lambda_i F e_i + \sqrt{\lambda_i}\lambda_j e_j}{(\lambda_i + \lambda_j)^{\frac{1}{2}}} ,$$

so that

(2.13)
$$g(AX, X) = 0$$
, $g(FAX, X) = 0$.

In the case where $\lambda_i < 0$ and $\lambda_j > 0$, and in the case where $\lambda_i < 0$ and $\lambda_j < 0$, we set, respectively,

$$X = \frac{\sqrt{\lambda_j}e_i + \sqrt{-\lambda_i}e_j}{(\lambda_j - \lambda_i)^{\frac{1}{2}}}, \qquad X = \frac{\sqrt{-\lambda_j}e_i + \sqrt{-\lambda_i}Fe_j}{(-\lambda_j - \lambda_i)^{\frac{1}{2}}},$$

so that we can also obtain (2.13).

Consequently, from (2.12) and (2.13) we have $\tilde{c} = H(\tilde{X}) = H(X)$ which proves the proposition.

Theorem 2.8. Let M be a complex hypersurface of \tilde{M} of constant holomorphic sectional curvature \tilde{c} . If M is of complex dimension ≥ 2 and satisfies the condition (2.6), then the following statements are equivalent:

- (i) M is totally geodesic in \tilde{M} ,
- (ii) M is of constant holomorphic sectional curvature.

Proof. If M is totally geodesic, then A vanishes on M, and therefore from (2.12) it follows that M is of constant holomorphic sectional curvature \tilde{c} . Conversely, if M is of constant holomorphic sectional curvature c, then by virtue of Proposition 2.7 we have, for any unit vector X tangent to M, $\tilde{c} = H(\tilde{X}) = H(X)$, which reduces (2.12) to $g(AX, X)^2 + g(FAX, X)^2 = 0$, so that A = 0, that is, M is totally geodesic.

3. *O-spaces and K-spaces

An almost Hermitian manifold \tilde{M} is called an *O-space (or quasi-Kählerian manifold) [3] or a K-space (or Tachibana space or nearly Kähler manifolds) [7] according as

(3.1)
$$\tilde{V}_X(F)Y + \tilde{V}_{FX}(F)FY = 0,$$

or

(3.2)
$$\tilde{V}_{X}(F)Y + \tilde{V}_{Y}(F)X = 0$$
 (or equivalently $\tilde{V}_{X}(F)X = 0$)

holds for any vector fields X and Y on \tilde{M} . It is well-known that a K-space is an *O-space.

First of all, let M be a complex hypersurface of an *O-space \tilde{M} . Then for any vector fields X and Y on $U(x) \subset M$ we have

$$\tilde{V}_{\scriptscriptstyle X}(FY) = F \tilde{V}_{\scriptscriptstyle X} Y + \tilde{V}_{\scriptscriptstyle X}(F) Y \; , \qquad \tilde{V}_{\scriptscriptstyle FX}(FFY) = F \tilde{V}_{\scriptscriptstyle FX}(FY) + \tilde{V}_{\scriptscriptstyle FX}(F) F Y \; .$$

Adding these equations and making use of (3.1) we obtain

$$(3.3) \tilde{V}_X(FY) - \tilde{V}_{FX}Y = F(\tilde{V}_XY + \tilde{V}_{FX}(FY)) .$$

Substituting (2.1) in (3.3) gives immediately

$$(3.4) V_{r}(FY) - V_{r}Y - FV_{r}Y - FV_{r}(FY) = 0,$$

(3.5)
$$h(X, FY) - h(FX, Y) = -k(X, Y) - k(FX, FY),$$

(3.6)
$$k(X, FY) - k(FX, Y) = h(X, Y) + h(FX, FY)$$
.

In consequence of

$$(3.7) V_r(F)FY = -FV_r(F)Y,$$

(3.4) reduces to

$$\nabla_x(F)Y + \nabla_{Fx}(F)FY = 0 ,$$

which shows that M is also an *O-space.

Since the left hand side of (3.5) is skew-symmetric in X, Y and the right hand side is symmetric in X, Y due to the symmetry of h and k, we have

$$h(X, FY) = h(FX, Y)$$
, $k(X, Y) + k(FX, FY) = 0$.

Similarly, from (3.6) follow

$$k(X, FY) = k(FX, Y)$$
, $h(X, Y) + h(FX, FY) = 0$,

which are equivalent to the above two equations.

Hence we have

Lemma 3.1. A complex hypersurface M of an *O-space \tilde{M} is also an *O-space, and satisfies

$$(3.8) h(X, FY) = h(FX, Y),$$

$$(3.9) k(X, FY) = k(FX, Y).$$

Next, let M be a complex hypersurface of a K-space \tilde{M} . Then for vector fields X and Y on $U(x) \subset M$ we have

$$\tilde{V}_{x}(FY) = F\tilde{V}_{x}Y + \tilde{V}_{x}(F)Y$$
, $\tilde{V}_{y}(FY) = F\tilde{V}_{y}X + \tilde{V}_{y}(F)X$.

Adding these equations and making use of (3.2) we obtain

(3.10)
$$\tilde{V}_{X}(FY) + \tilde{V}_{Y}(FX) = F(\tilde{V}_{X}Y + \tilde{V}_{Y}X) .$$

Substituting (2.1) in (3.10) gives readily

$$(3.11) V_X(FY) + V_Y(FX) = FV_XY + FV_YX,$$

(3.12)
$$h(X, FY) + h(FX, Y) = -2k(X, Y),$$

(3.13)
$$k(X, FY) + k(FX, Y) = -2h(X, Y).$$

(3.11) reduces to

$$\nabla_x(F)Y + \nabla_y(F)X = 0 ,$$

which shows that M is also a K-space. (3.12) and (3.8) imply h(X, FY) = -k(X, Y), i.e., h(X, Y) = k(X, FY), which is equivalent to B = FA by the remark in § 2. From (3.13) we shall get the same result.

Consequently, we have

Lemma 3.2. A complex hypersurface M of a K-space \tilde{M} is also a K-space, and satisfies

$$h(X, Y) = k(X, FY)$$
 (or equivalently $B = FA$).

Recently, Gray [1] proved

Lemma 3.3. In a K-space \tilde{M} of constant holomorphic sectional curvature \tilde{c} at a point $x \in \tilde{M}$, we have

(3.15)
$$\tilde{K}(p) = \frac{1}{4}\tilde{c}\{1 + 3g(FX, Y)^2\} + \frac{3}{4}\|\tilde{V}_X(F)Y\|^2 ,$$

where p is a 2-plane spanned by any two orthonormal vectors $X, Y \in T_x(\tilde{M})$. Making use of these Lemmas, we can prove

Theorem 3.4. Let M be a complex hypersurface of a K-space \tilde{M} with constant holomorphic sectional curvature \tilde{c} . If M is of complex dimension ≥ 3 , then the following statements are equivalent:

- (i) M is totally geodesic in \tilde{M} ,
- (ii) M is of constant holomorphic sectional curvature,
- (iii) at every point $x \in M$, all the sectional curvatures of M satisfy

(3.16)
$$K(p) \ge \frac{1}{4}\tilde{c}\{1 + 3g(FX, Y)^2\},$$

where p is a 2-plane spanned by any two orthonormal vectors $X, Y \in T_x(M)$.

Proof. Since, by Lemma 3.2, K-space satisfies (2.6), the fact that (i) is equivalent to (ii) is nothing but Theorem 2.8 (i). Next, if M is of constant holomorphic sectional curvature c, then $c = \tilde{c}$ by Proposition 2.7, and therefore by Lemma 3.3 we have, for any orthonormal vectors $X, Y \in T_x(M)$ at every point $x \in M$,

(3.17)
$$K(p) = \frac{1}{4}\tilde{c}\{1 + 3g(FX, Y)^2\} + \frac{3}{4}\|\nabla_x(F)Y\|^2,$$

which implies (3.16).

Finally, we shall prove that (iii) implies (i). Substituting (3.15) in (2.11), and making use of (3.16) we can easily obtain

(3.18)
$$\frac{\frac{3}{4}\|\tilde{\mathcal{V}}_X(F)Y\|^2 + \{g(AX,X)g(AY,Y) - g(AX,Y)^2\}}{+\{g(FAX,X)g(FAY,Y) - g(FAX,Y)^2\} \geq 0}.$$

Now let $\{e_1, \dots, e_n, Fe_1, \dots, Fe_n\}$ be an orthonormal basis given in Lemma 2.4, and set

$$X = (e_i + Fe_i)/\sqrt{2}$$
, $Y = (e_i - Fe_i)/\sqrt{2}$.

Since

$$AX = \lambda_i (e_i - Fe_i)/\sqrt{2}$$
, $AY = \lambda_i (e_i + Fe_i)/\sqrt{2}$, $FAX = \lambda_i (Fe_i + e_i)/\sqrt{2}$, $FAY = \lambda_i (Fe_i - e_i)/\sqrt{2}$,

we have

$$g(AX, X) = 0$$
, $g(FAX, X) = \lambda_i$
 $g(FAY, Y) = -\lambda_i$, $g(FAX, Y) = 0$, $g(AX, Y) = \lambda_i$.

Moreover, from Y = -FX, (3.2) and (3.7) we have

$$\tilde{V}_{x}(F)Y = -\tilde{V}_{x}(F)FX = F\tilde{V}_{x}(F)X = 0.$$

Thus (3.18) reduces to $\lambda_i = 0$ ($i = 1, \dots, n$), which together with Lemma 2.4 implies that A is identically zero at each point of M, so that M is totally geodesic in \tilde{M} .

Remark. It is well-known that in a K-space M of constant holomorphic sectional curvature $\tilde{c}, \tilde{c} > 0$ [8]. Hence from (3.17) we have

$$(3.19) K(p) \ge \frac{1}{4}\tilde{c} .$$

However, the authors do not know whether M is totally geodesic or not if (3.19) holds.

4. F-spaces

Recall that an almost Hermitian manifold M of dimension 2n is called an F-space if $R(X,Y) \cdot F = 0$ holds for any vector fields X and Y on M. Of course, a Kählerian manifold is an F-space, and an almost Kählerian manifold or a K-space satisfying $R(X,Y) \cdot F = 0$ is Kählerian [5]. However, an example

of a nonkählerian *O-space satisfying $R(X, Y) \cdot F = 0$ has been recently given by Yanamoto [9].

Now for an F-space M of constant holomorphic sectional curvature c we have (cf. [2, pp. 165–166])

$$R(X, Y, Z, W) = \frac{1}{4}c\{g(X, Z)g(Y, W) - g(X, W)g(Y, Z) + g(X, FZ)g(Y, FW) - g(X, FW)g(Y, FZ) + 2g(X, FY)g(Z, FW)\},$$
(4.1)

where X, Y, Z and W are any tangent vectors at a point of M, since $R(X, Y) \cdot F$ = 0 means that

$$R(X, Y, Z, W) = R(X, Y, FZ, FW) = R(FX, FY, Z, W)$$
.

On replacing Z and W in (4.1) by mutually orthogonal unit vectors X and Y respectively, we obtain

$$K(p) = \frac{1}{4}c\{1 + 3g(X, FY)^2\}$$
.

Hence we have the following theorem which is a generalization of the corresponding result in a Kählerian manifold [10].

Theorem 4.1. An F-space M of constant holomorphic sectional curvature c is an Einstein space. When $c \neq 0$, the sectional curvature K(p) of a 2-plane p spanned by any two orthonormal vectors X and Y in M satisfies the inequalities:

$$\frac{1}{4}c \le K(p) \le c \quad \text{for } c > 0 \;, \qquad \frac{1}{4}c \ge K(p) \ge c \quad \text{for } c < 0 \;,$$

where the equality $\frac{1}{4}c = K(p)$ occurs when g(X, FY) = 0, and K(p) = c occurs when $g(X, FY) = \pm 1$.

Proof. It is sufficient to prove the first assertion of the theorem. Let $R_{jih}{}^k$, g_{ji} and $F_j{}^i$ be the local components of R, g and F respectively, and put $R_{jihk} = g_{ka}R_{jih}{}^a$ and $F_{ji} = g_{ia}F_j{}^a$. Then (4.1) can be written as

$$(4.2) R_{jihk} = -\frac{1}{4}c(g_{jh}g_{ik} - g_{jk}g_{ih} + F_{hj}F_{ki} - F_{kj}F_{hi} + 2F_{ij}F_{kh}).$$

Transvecting (4.2) with g^{ih} we have

$$(4.3) R_{jk} = \frac{1}{2}(n+1)cg_{jk} ,$$

so that our space is Einsteinian. q.e.d.

Applying $\overline{V}_b\overline{V}_a$ to (4.2), we have

$$\begin{split} V_b V_a R_{jihk} = -\frac{1}{4} c \{ (V_b V_a F_{hj}) F_{ki} + F_{hj} V_b V_a F_{ki} - (V_b V_a F_{kj}) F_{hi} \\ -F_{kj} V_b V_a F_{hi} + 2 (V_b V_a F_{ij}) F_{kh} + 2 F_{ij} V_b V_a F_{kh} \} \end{split}$$

(4.4)
$$-\frac{1}{4}c\{(V_{a}F_{hj})V_{b}F_{ki} + (V_{b}F_{hj})V_{a}F_{ki}\}$$

$$+\frac{1}{4}c\{(V_{a}F_{kj})V_{b}F_{hi} + (V_{b}F_{kj})V_{a}F_{hi}\}$$

$$-\frac{1}{2}c\{(V_{a}F_{ij})V_{b}F_{kh} + (V_{b}F_{ij})V_{b}F_{kh}\} .$$

Since $R(X, Y) \cdot F = 0$ means that $\nabla_b \nabla_a F_{hj}$ is symmetric in a, b, the right hand side of (4.4) is symmetric in a, b. Thus from (4.4) we have

Lemma 4.2. In an F-space of constant holomorphic sectional curvature, we have

$$\nabla_b \nabla_a R_{jihk} - \nabla_a \nabla_b R_{jihk} = 0$$
, i.e., $R(X, Y) \cdot R = 0$.

Next, calculating the square of both sides of (4.2) we have

$$R_{iihk}R^{jihk} = 2c^2n(n+1)$$

and therefore

(4.5)
$$R_{jihk}R^{jihk} = 2R^2/[n(n+1)],$$

since C = R/[n(n+1)] from (4.3). Hence we obtain

Lemma 4.3. In an F-space of constant holomorphic sectional curvature, the length of the tensor R_{jihk} is constant.

On the other hand, the following two lemmas are known.

Lemma 4.4 (Lichnerowicz [4], Yano [10]). In a Riemannian manifold, we have

$$\begin{split} \varDelta(R_{jihk}R^{jihk}) &= 2(\overline{V}_sR_{jihk})\overline{V}^sR^{jihk} - 4R^{jihk}\overline{V}_j(\overline{V}_hR_{ik} - \overline{V}_kR_{ih}) \\ &- 4R^{jihk}H^s_{ihk,sj} \,, \end{split}$$

where Δ and $H_{jih}{}^k{}_{,st}X^sY^t$ are the Laplacian and the components of $R(X,Y)\cdot R$ respectively.

Lemma 4.5 (Sawaki [5]). An almost Hermitian manifold M is Kählerian if it satisfies:

- (i) $R(X, Y) \cdot F = 0$, $\nabla_z R(X, Y) \cdot F = 0$ for any vector fields X, Y and Z on M,
 - (ii) the rank of the Ricci form is maximum.

Making use of the above results, we can prove

Theorem 4.6. If M is an F-space of nonzero constant holomorphic sectional curvature, then M is Kählerian.

Proof. By virtue of Theorem 4.1, Lemma 4.2 and Lemma 4.3, from Lemma 4.4 we have $V_s R_{jihk} = 0$, so that M is locally symmetric. Thus from Lemma 4.5 it follows that M is Kählerian.

Bibliography

- [1] A. Gray, Nearly Kähler manifolds, J. Differential Geometry 4 (1970) 283-309.
- [2] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. II, John Wiley, New York, 1969.
- [3] S. Kotō, Some theorems on almost Kählerian spaces, J. Math. Soc. Japan 12 (1960) 422-433.
- [4] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- [5] S. Sawaki, Sufficient conditions for an almost Hermitian manifold to be Kählerian, Hokkaido Math. J. (1972).
- [6] B. Smyth, Differential geometry of complex hypersurfaces, Thesis, Brown University, 1966.
- [7] S. Tachibana, On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. J. 11 (1959) 351-363.
- [8] K. Takamatsu, Some properties of constant scaler curvature, Bull. Fac. Ed. Kanazawa Univ. 19 (1968) 25-27.
- [9] H. Yanamoto, On orientable hypersurface of R⁷ satisfying R(X,Y)·F=0, Res. Rep. Nagaoka Tech. College 8 (1972) 9-14.
- [10] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965.

NIIGATA UNIVERSITY, NIIGATA, JAPAN