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ALMOST HERMITIAN MANIFOLDS WITH CONSTANT
HOLOMORPHIC SECTIONAL CURVATURE

SUMIO SAWAKI & KOUEI SEKIGAWA

1. Introduction

B. Smyth proved in his thesis [6] the following

Theorem. Let M be q complex hypersurface of a Kihlerian manifold M
of constant holomorphic sectional curvature €. If M is of complex dimension
> 2, the following statements are _equivalent:

(1) M is totally geodesic in M,

(ii) M is of constant holomorphic sectional curvature,

(iii) M is an Einstein manifold and at one point of M all sectional curva-
tures of M are >1C (resp. <1%) when & > 0 (resp. <0).

One of the purposes of the present paper is to generalize this theorem to
almost Hermitian manifolds, and another is to prove that an F-space of con-
stant holomorphic sectional curvature is K#hlerian. Here by an F-space we
mean an almost Hermitian manifold M satisfying R(X,Y)-F = 0 for any
vector fields X and Y on M, where the endomorphism R(X, Y) operates on
the almost complex structure tensor F as a derivation at each point of M.

In §2, we shall state the differential-geometric properties of a complex
hypersurface of an almost Hermitian manifold satisfying a certain condition
and a generalization of the equivalence of the first two statements of Smyth’s
result. We proceed in § 3 to study the same properties of *O-spaces and K-
spaces, and to state a generalization of the result of Smyth. In §4 we shall
prove some theorems for F-spaces of constant holomorphic sectional curva-
ture. In §32 and 3, by a complex hypersurface we mean a connected almost
complex hypersurface.

2. Complex hypersurfaces of an almost Hermitian manifold

Let M be an almost Hermitian manifold of complex dimension » + 1, and
denote the almost complex structure and the Hermitian metric of M by F and
g respectively. Moreover, let M be a complex hypersurface of M, i.e., suppose
that there exists a complex analytic mapping f: M — M. Then for each x ¢ M
we identify the tangent space T,(M) with f (T.(M)) C T,.,(M) by means of
fi. Since ffog = ¢ and Fof, = f,oF where g’ and F’' are the Hermitian
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metric and the almost complex structure of M respectively, g’ and F’ are
respectively identified with the restrictions of the structures ¢ and F to the
subspace f.(T.(M)).

As is well known, we can choose the following special neighborhood U(x)
of x for a neighborhood U(f(x)) of f(x). Let {U; %} (i =1,---,2n + 2)be a
system of coordinate neighborhoods of M. Then {U; x%} is a system of coor-
dinate neighborhoods of M such that x**** = x?**? = 0 where x* = X’ f.

By § we always mean the Riemannian covariant differentiation on M and
by & a differentiable unit vector field normal to M at each point of U(x).

If X and Y are vector fields on the neighborhood U(x), we may write

2.1 VPrY =VyY + h(X, V)¢ + kKX, Y)FE

where I, Y denotes the component of ,Y tangent to M.
Lemma 2.1. () F is the covariant differentiation of the almost Hermi-
tian manifold M. ,
(i1) & and k are symmetric covariant tensor fields of degree 2 on U(x).
Proof. Making use of (2.1), we have

7f1X(f2Y) - flﬁX(fZY) = fl(XfZ)Y —+ fleﬁXY
= LXHY + ff VY + fHR(X, Y)E + fHLE(X, Y)FE,
Vrx(hY) = 7, 2(1Y) + h(FX, £,Y)E + k(1. X, 1,Y)FE ,

where X and Y are vector fields on U(x), and f, and f, are differentiable func-
tions on U(x). From the above two equations, we have

(X 1Y) = fiLA(X,Y), kX, £Y) = fibk(X,Y),

which show that # and % are tensor fields on U(x).
Thus, since VY becomes a vector fields, from (2.1) it follows that ¥ is a
covariant differentiation on U(x).

Next, from
VzY = VY + h(X,Y)s + k(X, Y)F¢ ,
71/'X = VYX + h(Y,X)E ‘T k(YsX)FE b
[Xa Y]_,f[ = [X: Y]W s
we have

TX,Y)=TX,Y) + {h(X,Y) — i(Y,X)}6 + (k(X,Y) — k(Y, X)}FE ,

where T (resp. Z" ) is the torsion tensor of the connection on M (resp. U(x))
with respect to F/ (resp. F). Since T = 0, it follows that 7 = 0 and 4 and &
are symimnetric.
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From /g = 0 we have easily g = 0. Hence the proof is c~ompleted.
:l’he identities g(£,&) = 1 and g(F§,F§) =1 imply g(Fy§,8) = 0 and
gV x(F§), F&) = O respectively. Therefore we may put

(2.2) Vit = —AX) + s(X)F¢,
(2.3) Vy(F§) = —B(X) + t(X)¢,

where A(X) and B(X) are tangent to M.

Lemma 2.2. (i) A, B and s, t are tensor fields on U(x) of type (1.1) and
(0,1) respectively.

(ily A and B are symmetric with respect to g, and satisfy

(2.4) MX,Y) =gl4X,Y),
(2.5) k(X,Y) =g(BX,Y)

for any vector fields X and Y.
Proof. For any vector field X and any differentiable function f on U(x),
we have

& =V,38 = —AFX) + sUX)FE = —fAX) + fs(X)Fz ,

from which it follows that A(fX) = fA(X), s(fX) = fs(X). Thus 4 and s are
tensor fields on U(x). For & and any vector field Y on U(x), we have g(Y, &)
= 0 and therefore

g(ﬁxya E) + g(Y',- 71’5) = O >

in which substitution of (2.1) and (2.2) gives (2.4). However, since 4 is sym-
metric, from (2.4) it follows that g(4X,Y) = g(X,AY) which shows that 4
is symmetric. Similarly the properties of B are verified.

Now let M be a complex hypersurface satisfying the condition

(2.6) MX,Y) = k(X,FY)

for any vector fields X and Y on U(x) at every point x € M. It is easily verified
that the condition (2.6) is independent of the choice of mutually orthogonal
unit vectors & and F¢€ normal to M.

Lemma 2.3. In a complex hypersurface M of M satisfying (2.6), we have

(1) FA = —AF, FB = —BF,
(ii) FA and FB are symmetric with respect to g,
(iii) B =FA .

Proof. By virture of (2.4) and (2.6), for any vector fields X and Y we have



126 SUMIO SAWAKI & KOUEI SEKIGAWA

(2.7) g(AFX,Y) = h(FX,Y) = k(FX,FY) ,
(2.8) g(FAX,Y) = —g(4X,FY) = —h(X,FY) = —k(FX,FY) ,

which imply that g(4FX,Y) = —g(FAX,Y), sothat AF = —FA. Since A is
symmetric, by (i) we thus have

8AFX,Y) = g(FX,AY) = g(X, AFY) ,

which shows that AF is symmetric. Similarly the properties of B are verified.
Finally, by (2.6) and (2.5) we have

WX,FY) = —k(X,Y) = —g(BX,Y) = —g(FBX,FY) .

On the other hand, we have W(X,FY) = g(4X,FY) by (2.4) and therefore
g(AX,FY) = —g(FBX,FY), from which it follows that 4 = —FB, i.e.,
B=FA.

Remark. In a complex hypersurface M of M, WX,Y) = k(X,FY) is
equivalent to B = FA4.

Since A4 is symmetric and F4 = — AF in a complex hypersurface M of M
satisfying (2.6), we have the following well-known

Lemma 2.4. [n a complex hypersurface M of M satisfying (2.6), at any
point y € U(x) there exists an orthonormal basis {e,, - - -, e,, Fe,, - - -, Fe,} of
T,(M) with respect to which the matrix A is diagonal of the form

L — 4z

where Ae;, = 2.e;, and AFe; = —A;Fe;, i=1,.-- n.

Lemma 2.5. If R and R are the Riemannian curvature tensors of M and
a complex hypersurface M of M satisfying (2.6) respectively, then for any vector
fields X, Y, Z and W on U(x) we have the following Gauss equation:

R(X,Y,Z,W)=RX,Y,Z,W)
2.9) — {8(4X, 2)8(AY, W) — g(AX, W)g(A4Y, Z)}
— {e(FAX, Z)g(FAY, W) — g(FAX, W)g(FAY,Z)} .

Proof. From (2.1) it follows that

FoW = FeW + WY, W)E + k(Y, W)FE .
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Applying 4 x to this equation and making use of (2.2) and (2.3), we obtain

VFeW =V VW — h(Y, WAX) — k(Y, W)B(X)
(2.10) + (WX, P W) + X(W(Y, W) + kY, WX}
+ kX, VW) + X(k(Y, W) + WY, W)s(X)}FE ,

ﬁ[X,Y]W = V[X,Y]W + A(X, Y1, W)§ + k(IX, Y1, WIFE .
Substitution of (2.10) in

RX, YW — R(X, Y)W
=Tl eW — Vi aW — Vg W — TV yW — Vil W — Vg W)

gives easily

or (2.9) by (2.4), (2.5) and (2.6).

Lemma 2.6. Let M be a complex hypersurface of M and satisfy the con-
dition (2.6).

(1) If pis 2-plane tangent to M at a point of U(x), then

K(p) = K(p) — {8(4X, X)g(4Y,Y) — g(4X, Y)}

(2.11)
— {8(FAX, X)g(FAY,Y) — g(FAX,Y)} ,

where X, Y form an orthonormal basis of p, and K(p) (re~sp. K(p)) is the sec-
tional curvature of p considered as a 2-plane tangent 1o M (resp. M).
(i) If X is a unit vector tangent to M at a point of U(x), then

(2.12) HX) = HX) + 2{g(4X,X)* + gFAX,X)7} ,

where H(X) (resp. H(X)) is the holomorphic sectional curvature in M
(resp. M).

Proof. (i) is immediate on replacing Z and W in the Gauss equation by X
and Y respectively, and making use of the fact that 4 and FA are symmetric.
(ii) is also immediate on replacing ¥ by FX in (2.11) and making use of the
fact that F4 = —AF.

Proposition 2.7. Let M be a complex hypersurface of M of constant holo-
morphic sectional curvature &. If M is of complex dimension >2 and satisfies
the condition (2.6), then at each point of M there exists a holomorphic plane
whose sectional curvature in M is ¢, and therefore if M is of constant
holomorphic sectional curvature ¢, then ¢ = C.

Proof. Let{e, ---,e,,Fe,, ---,Fe,} be an orthonormal basis in Lemma
2.4. Since n > 2, there exist 2; and 2; (i % J) defined in Lemma 2.4.
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In the case where 2; > 0 and 2; > 0, we set

X =@+ Zj)"’(\/zei + \/Z‘Fej) .

Then
AX = \/7])‘161"" \/)._,;Zerj , FAX — '\//Tj).iFei-{' '\/Z_i).jej
(2 + 2)F (2 + 2%
so that
(2.13) g(AX, X)) =0, g(FAX,X) =0.

In the case where 2; < 0 and 1; > 0, and in the case where 2, < 0 and
2; < 0, we set, respectively,

(5 — 2F

so that we can also obtain (2.13).

Consequently, from (2.12) and (2.13) we have ¢ = H(X) = H(X) which
proves the proposition.

Theorem 2.8. Let M be a complex hypersurface of M of constant holo-
morphic sectional curvature &. If M is of complex dimension >2 and satisfies
the condition (2.6), then the following statements are equivalent :

(1) M is totally geodesic in M,

(i) M is of constant holomorphic sectional curvature.

Proof. 1If M is totally geodesic, then A vanishes on M, and therefore from
(2.12) it follows that M is of constant holomorphic sectional curvature &.
Conversely, if M is of constant holomorphic sectional curvature ¢, then by
virtue of Proposition 2.7 we have, for any unit vector X tangent to M, ¢ =
H(X) = H(X), which reduces (2.12) to g(4X,X)* + g(FAX,X)* = 0, so
that 4 = O, that is, M is totally geodesic.

_ V=Tew + Y=EFe,

., X
(—2; — ¢

s

3. *O-spaces and K-spaces

An almost Hermitian manifold M is called an *O-space (or quasi-Kéhlerian
manifold) [3] or a K-space (or Tachibana space or nearly Kihler manifolds) [7]
according as

(3.1 Fo(P)Y + FPr(FY =0,
or
(3.2 FAPY +F+FEX =0 (or equivalently ¥ (F)X = 0)

holds for any vector fields X and ¥ on M. It is well-known that a K-space is
an *QO-space.
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First of all, let M be a complex hypersurface of an *O-space M. Then for
any vector flelds X and Y on U(x) C M we have

ViFY) = FP Y + V,(F)Y,  Fpy(FFY) = FV oy (FY) + Ve (F)FY .
Adding these equations and making use of (3.1) we obtain
(3.3) Vi(FY) — VpxY = FZ Y + Vpx(FY)) .

Substituting (2.1) in (3.3) gives immediately

(3.4) VAFY) — FpyY — FV,Y — FVo((FY) =0,
(3.5) WX,FY) — h(FX,Y) = —k(X,Y) — k(FX,FY) ,
(3.6) k(X,FY) — k(FX,Y) = h(X,Y) + WFX,FY) .

In consequence of
3.7 VF(F)FY = —FV(F)Y ,
(3.4) reduces to

VAF)Y + Fri(F)FY =0,

which shows that M is also an *O-space.
Since the left hand side of (3.5) is skew-symmetric in X, Y and the right
hand side is symmetric-in X, Y due to the symmetry of /4 and &, we have

MX,FY) = MFX,Y) , kX,Y) - k(FX,FY)=0.
Similarly, from (3.6) follow
k(X,FY) = k(FX,Y) , AX,Y) + h(FX,FY)=0,

which are equivalent to the above two equations.

Hence we have

Lemma 3.1. A complex hypersurface M of an *O-space M is also an
*O-space, and satisfies

(3.8) h(X,FY) = h(FX,Y) ,
3.9 k(X,FY) = k(FX,Y) .

Next, let M be a complex hypersurface of a K-space M. Then for vector
fields X and Y on U(x) C M we have

V(FY)=FP,Y + V.(F)Y, Fy(FY)=FP;X +Py(F)X .
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Adding these equations and making use of (3.2) we obtain

(3.10) VAFY) + Pp(FX) = FP,Y + 7y X) .
Substituting (2.1) in (3.10) gives readily

(3.1 FPAFY) + Vp(FX) = FV Y 4 FV.X ,
(3.12) WX, FY) + W(FX,Y) = —2k(X,Y),
(3.13) MX,FY) + k(FX,Y) = —2h(X,Y) .

(3.11) reduces to

which shows that M is also a K-space. (3.12) and (3.8) imply A(X, FY) =
—k(X,Y), ie., (X,Y) = k(X, FY), which is equivalent to B = FA by the
remark in § 2. From (3.13) we shall get the same result.

Consequently, we have

Lemma 3.2. A complex hypersurface M of a K-space M is also a K-space,
and satisfies

AX,Y) = kX, FY) (or equivalently B = FA) .

Recently, Gray [1] proved
Lemma 3.3. In a K-space M of constant holomorphic sectional curvature
¢ at a point x € M, we have

(3.15) R(p) = 11 + 3g(FX, Y)Y} + 2|IP(P)Y,

where p is a 2-plane spanned by any two orthonormal vectors X, Y e T AM).

Making use of these Lemmas, we can prove

Theorem 3.4. Let M be a complex hypersurface of a K-space M with
constant holomorphic sectional curvawre . If M is of complex dimension >3,
then the following statements are equivalent:

(i) M is totally geodesic in M,

(ii) M is of constant holomorphic sectional curvaiure,

(iii) at every point x ¢ M, all the sectional curvatures of M satisfy

(3.16) K(p) > 5e{1 + 33(FX,Y)},

where p is a 2-plane spanned by any two orthonormal vectors X,Y ¢ T (M).

Proof. Since, by Lemma 3.2, K-space satisfies (2.6), the fact that (i) is
equivalent to (ii) is nothing but Theorem 2.8 (i). Next, if M is of constant
holomorphic sectional curvature ¢, then ¢ = ¢ by Proposition 2.7, and there-
fore by Lemma 3.3 we have, for any orthonormal vectors X, Y e T (M) at
every point x ¢ M,
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(3.17) K(p) = 3¢{1 + 3e(FX, Y)'} + /W (P)Y|?,

which implies (3.16).
Finally, we shall prove that (iii) implies (i). Substituting (3.15) in (2.11),
and making use of (3.16) we can easily obtain
37 PY P + (84X, X)g(AY,Y) — g(4X, YV}

(3.18)
+ {g(FAX,X)g(FAY,Y) — g(FAX,Y)}} > 0.

Now let {e,, - - -, e,, Fey, - - -, Fe,} be an orthonormal basis given in Lemma
2.4, and set

X =(e; + Fe)jv 2, Y = (e; — Fe) /v 2 .
Since
AX = (e, — Fe) |/ 2 , AY = A(e; + Fe) [V 2 ,
FAX = 2(Fe; + e) /v 2 ,  FAY = 3,(Fe; —e) /v 2 ,
we have
g(AX,X) =0, gFAX,X) =4
gFAY,Y) = —2,, gFAX,Y)=0, gdX,V)=2 .
Moreover, from ¥ = —FX, (3.2) and (3.7) we have
Po(PY = ~F (F)FX = FFx(F)X =0 .

Thus (3.18) reduces to 4, =0 (@ =1, ---,n), which together with Lemma
2.4 implies that A4 is identically zero at each point of M, so that M is totally
geodesic in M.

Remark. It is well-known that in a K-space M of constant holomorphic
sectional curvature &, ¢ > 0 [8]. Hence from (3.17) we have

(3.19) K(p) > ;¢ .

However, the authors do not know whether M is totally geodesic or not if
(3.19) holds.

4. F-spaces

Recall that an almost Hermitian manifold M of dimension 27 is called an
F-space if R(X,Y)-F = 0 holds for any vector fields X and ¥ on M. Of
course, a Kihlerian manifold is an F-space, and an almost K&dhlerian manifold
or a K-space satisfying R(X,Y).F = 0 is Kdhlerian [5]. However, an example
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of a nonkihlerian *O-space satisfying R(X, Y)-F = 0 has been recently given
by Yanamoto [9].
Now for an F-space M of constant holomorphic sectional curvature ¢ we
have (cf. [2, pp. 165-166])
RX,Y,Z,W) = ;c{g(X, 2)g(Y, W) — gX, W)e(Y, Z)
(4.1) + 8X,FZ)g(Y,FW) — g(X,FW)g(Y,FZ)
+ 28(X,FY)g(Z, FW)} ,

where X, Y, Z and W are any tangent vectors at a point of M, since R(X,Y)-F
= 0 means that

RX,Y,Z,W)=RX,Y,FZ,FW) = R(FX,FY,Z, W) .

On replacing Z and W in (4.1) by mutually orthogonal unit vectors X and
Y respectively, we obtain

K(p) = ic{l + 3g(X,FY)} .

Hence we have the following theorem which is a generalization of the corre-
sponding result in a K#hlerian manifold [10].

Theorem 4.1. An F-space M of constant holomorphic sectional curvature
c is an Einstein space. When ¢ + 0, the sectional curvature K(p) of a 2-plane
p spanned by any two orthonormal vectors X and Y in M satisfies the
inequalities :

<K@ <c forc>0, Ic>Kp)>c forc<O0,

where the equality ¢ = K(p) occurs when g(X,FY) = 0, and K(p) = c occurs
when g(X,FY) = +1.

Proof. 1t is sufficient to prove the first assertion of the theorem. Let
R;,%, g4; and F* be the local components of R, g and F respectively, and put
Rjini = guaRyin® and Fj; = g;,F;*. Then (4.1) can be written as

(4.2) Ry = —5c(@n8ix — 8ix&in + FriFrs — FrjFri + 2F;;F ) .
Transvecting (4.2) with g** we have
(4.3) R, =+ + Degyr »

so that our space is Einsteinian. gq.e.d.
Applying ',V , to (4.2), we have
VbVa.Rjihk = _:}ic{(VbVthj)Fki + thVbVaFki - (VbVa,ij)Fhi
—ijVbVthi + Z(VbVa,Fij)Fkh + 2FiijVaFkh}
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4.4 —5C{(VoFn WV sF i + WoFu DV oFii}
A AT F DV o Fn + T Fu DV oF i}
— 3c{(VoF i)V sFsn + W F )V o F i}

Since R(X,7Y)-F = 0 means that V',V F,; is symmetric in a, b, the right hand
side of (4.4) is symmetric in a, b. Thus from (4.4) we have

Lemma 4.2. In an F-space of constant holomorphic sectional curvature,
we have

VoV oRjine — VoV yRjsne =0, 1e., RX,Y)-R=0.
Next, calculating the square of both sides of (4.2) we have
RinRI™ = 2¢%0(n + 1)
and therefore
(4.5) Ry R7™ = 2R?[[n(n + 1],

since C = R/{n(r + 1)] from (4.3). Hence we obtain

Lemma 4.3. In an F-space of constant holomorphic sectional curvature,
the length of the tensor R, is constant.

On the other hand, the following two lemmas are known.

Lemma 4.4 (Lichnerowicz [4], Yano [10]). In a Riemannian manifold, we
have

A(RjihkRjihk) = Z(Vstihk)Vstihk —_ 4Rjithj(VhRik - VkRih)
-— 4Rjiths'ih,k,sj ,

where 4 and H;;,* XYY" are the Laplacian and the components of R(X,Y) R
respectively.

Lemma 4.5 (Sawaki [5]). Anr almost Hermitian manifold M is Kdhlerian
if it satisfies:

(i) RX, ). F=0, F,RX,Y)-F=0
for any vector fields X,Y and Z on M,

(il) the rank of the Ricci form is maximum.

Making use of the above results, we can prove

Theorem 4.6. If M is an F-space of nonzero constant holomorphic sec-
tional curvature, then M is Kihlerian.

Proof. By virtue of Theorem 4.1, Lemma 4.2 and Lemma 4.3, from
Lemma 4.4 we have ViR, = 0, so that M is locally symmetric. Thus from
Lemma 4.5 it follows that M is Kdhlerian.
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